. D G ] 2 4 Ju n 20 04 CANONICAL EQUIVARIANT EXTENSIONS USING CLASSICAL HODGE THEORY

نویسنده

  • Christopher Allday
چکیده

Lin and Sjamaar have used symplectic Hodge theory to obtain canonical equivariant extensions for Hamiltonian actions on closed symplectic manifolds that have the strong Lefschetz property. Here we obtain canonical equivariant extensions much more generally by means of classical Hodge theory.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

m at h . D G ] 2 4 Ju n 20 04 CANONICAL EQUIVARIANT EXTENSIONS USING CLASSICAL HODGE THEORY

Lin and Sjamaar have used symplectic Hodge theory to obtain canonical equivariant extensions for Hamiltonian actions on closed symplectic manifolds that have the strong Lefschetz property. Here we obtain canonical equivariant extensions much more generally by means of classical Hodge theory.

متن کامل

Canonical equivariant extensions using classical Hodge theory

In [4], Lin and Sjamaar show how to use symplectic Hodge theory to obtain canonical equivariant extensions of closed forms in Hamiltonian actions of compact connected Lie groups on closed symplectic manifolds which have the strong Lefschetz property. In this paper, we show how to do the same using classical Hodge theory. This has the advantage of applying far more generally. Our method makes us...

متن کامل

Ju n 20 06 EULER HOMOLOGY

We geometrically construct a homology theory that generalizes the Euler characteristic mod 2 to objects in the unoriented cobordism ring N∗(X) of a topological space X. This homology theory Eh∗ has coefficients Z/2 in every nonnegative dimension. There exists a natural transformation N∗(X) → Eh∗(X) that for X = pt assigns to each smooth manifold its Euler characteristic mod 2. The homology theo...

متن کامل

ar X iv : h ep - t h / 04 06 15 5 v 1 1 8 Ju n 20 04 Two - parameter extensions of the κ - Poincaré quantum deformation

We consider the extensions of classical r-matrix for κ-deformed Poincaré algebra which satisfy modified Yang-Baxter equation. Two examples introducing additional deformation parameter (dimension-full 1 κ or dimensionless ξ) are presented. We describe the corresponding quantization (two-parameter κ-Poincaré quantum Hopf algebras) in explicite form as obtained by twisting of standard κ-deformed f...

متن کامل

Superconformal algebras and Lie superalgebras of the Hodge theory

We observe a correspondence between the zero modes of superconformal algebras S(2, 1) and W (4) ([8]) and the Lie superalgebras formed by classical operators appearing in the Kähler and hyper-Kähler geometry. 1 Lie superalgebras of the Hodge theory 1.1 Kähler manifolds Let M = (M2n, g, I, ω) be a compact Kähler manifold of real dimension 2n, where g is a Riemannian (Kähler) metric, I is a compl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008